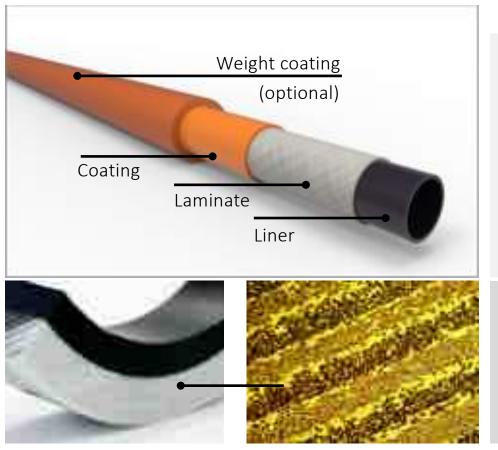
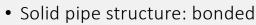


Free Hanging Composite Risers for Ultradeep Waters

Teofilo Barbosa *Product Development Engineering Manager*

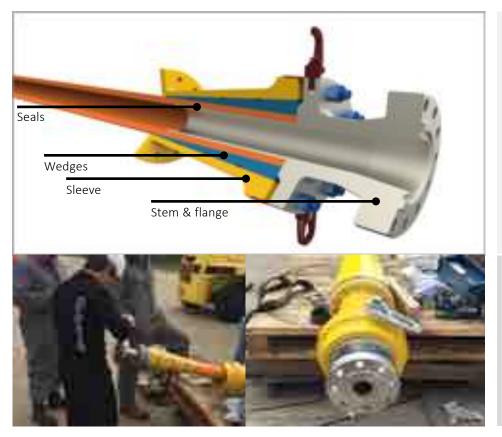
Agenda


- Introduction to Airborne
- TCP concept
- Design & Product Qualification
- Riser Development Case Study



The first and leading manufacturer of TCP TCP concept developed by Airborne 1999 Founding of Airborne Oil & Gas 2007 First and leading manufacturer of TCP First pilot line for continuous TCP manufacturing Shareholders include Sumitomo Corporation, Subsea 7, Joint Industry Program launched to Shell, Chevron and Saudi Aramco 2009develop a deepwater riser concept Headquartered in IJmuiden. The Netherlands and test feasibility Sales offices in Houston (USA) and Kuala Lumpur (Malaysia) ±100 personnel First commercial delivery of offshore downline 2010 HPE steps in as investor Full-scale production site for TCP in 2012-Champion in composite pipe for Upstream Oil & Gas IJmuiden (Port of Amsterdam) Largest track record in the world; field proven in subsea applications including Flowline, Jumper, Spool and Downline Airborne Oil & Gas independent company 2014 (well intervention) Launch of the Recommended Practice Qualified under DNV and manufactured under ISO 9001 and for TCP: DNVGL-RP F119 API Spec Q1 quality controlled conditions. 2015 Shell. Chevron and Evonik on board **Oualified in accordance with DNVGL-RP F119** as strategic investors Saudi Aramco Energy Ventures on board as TCP proven to reduce total installed cost and total life cycle cost 2016 strategic investor No corrosion, no inhibitor pumping, no related inspections Track record on all products except Opening of regional offices in US & KL Fast, lightweight and flexible 2017-TCP Riser Subsea 7 on board as strategic Ability to terminate offshore investor World's first flowline for hydrocarbon 2018 service (Petronas, Malaysia) Sumitomo Corporation on board as strategic investor 3

Simplicity by design: TCP concept


- Fit for purpose polymer: liner, matrix & coating
- Glass or carbon fibres fully embedded (true composite)
- Optional weight coating for on-bottom stability
- ➢ No corrosion
- ➤ Flexible
- ➤ Light weight

A plastic liner is over-wound with polymer impregnated fibre tapes and melt fused using Airborne Oil & Gas propriety production technology to form a single walled structure

Monolithic wall reduces permeation and allows for high pressure applications including gas service

Simplicity by design: TCP concept

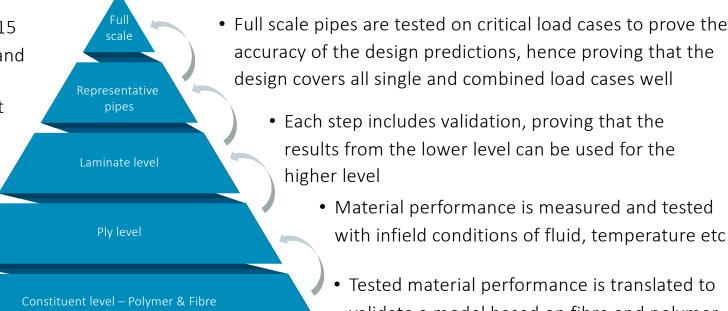
- Fully qualified and field proven
- Can be fitted with bend restrictors, bend stiffeners and clump weights (TCP Downline)
- Various flange options available (API, ANSI, etc)
- Various material options available (carbon steel, CRA etc)

The TCP can be terminated in the field, both onshore and offshore. This allows for flexibility in tie-in as well as pulling through J-tubes without end-fitting

The liner is reamed prior to stem insert, maximising bore dimensions CRA options include weld inlays

TCP Products that bring value to the industry

Onshore	Subsea Risers Flowlines (SURF)		Subsea Well Intervention (SWI)	
TCP Light	Flowlines & Spools	Risers	Dynamic Jumpers & Hoses	Downlines
			the second second	
Key Proposition	Key Proposition		Key Proposition	
 High pressure, sour 	Lower total installed cost	 50% weight reduction Lower riser cost Lower installation cost	Collapse resistant 3000 mSmooth boreFlexible	High flowratesLower cost per interventionLong service life
Key Applications	Key Applications		Key Applications	
• Flowline	 Spools & well jumpers Gas. water & HC service 	DeepwaterCorrosive environmentsGas, water & HC service	• Plug 8	well intervention & Abandonment ne pre-commissioning



Shaping the environment to accept new technology

DNVGL-RP F119 Standard

DNVGL-RP F119 Qualification approach

- Initiated by Airborne Oil & Gas in 2015
- Standard specifically meant for TCP and offshore use
- Airborne Oil & Gas is the world's first company qualified in accordance with it

- accuracy of the design predictions, hence proving that the design covers all single and combined load cases well • Each step includes validation, proving that the
 - results from the lower level can be used for the higher level
 - Material performance is measured and tested with infield conditions of fluid, temperature etc
 - Tested material performance is translated to validate a model based on fibre and polymer

Leading to broad qualification status with leading operators

DNV Qualifications

Product & client

*: In progress

Simple & fit for purpose: TCP

Track record

Delivery	TCP Description	Application	Client	End user / project
2011	2 x 4.5" downlines, 800m	Trenching	AGR, Flexlife	Chevron
2012	3" downline, 2500m + reeler	Pipeline pre-comm	Saipem	Guara & Lula, Sapinhoa
2015	2.5" downline, 1600m	Pipeline pre-comm	IKM /Subsea7	Statoil Astaa Hansteen
2015	2x 2", 10ksi dynamic jumpers	P&A	Wild Well Control	Marubeni
2015	1" static high pressure spools	Methanol injection	Chevron	Alder
2016	2.5", 10 ksi dynamic jumpers	Acid stimulation	OneSubsea	Various
2016	3" downline, 1500m + spread	Acid stimulation	Shell	SNEPCo Bonga
2017	6" jumper spool qualification	Spool, water injection	Total	Zinia
2017*	5.2" 10 ksi jumper spool qualification	Spool, water injection	Shell	Perdido
2017	2" 10 ksi dynamic jumpers	Acid stimulation	Enpro / GE Oil & Gas	Tullow Oil Ghana
2017	2″ 5 ksi gas lift jumper	Gas lift	Anasuria	Anasuria
2017	6" flowline, 550m	Hydrocarbon production	Petronas Carigali	SKO West Lutong
2018*	6" 100 bar TCP Light, 1500m	Onshore, crude	Saudi Aramco	Saudi Aramco
2018*	6" 7500 psi TCP Light, sour gas	Onshore well jumper	Saudi Aramco	Saudi Aramco
2018*	2.5" 7500 psi TCP Jumper Spool	Crude oil	Genesis	Genesis

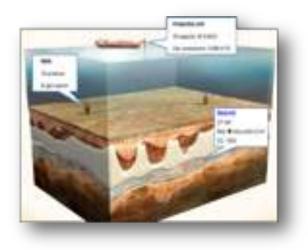


*: in execution

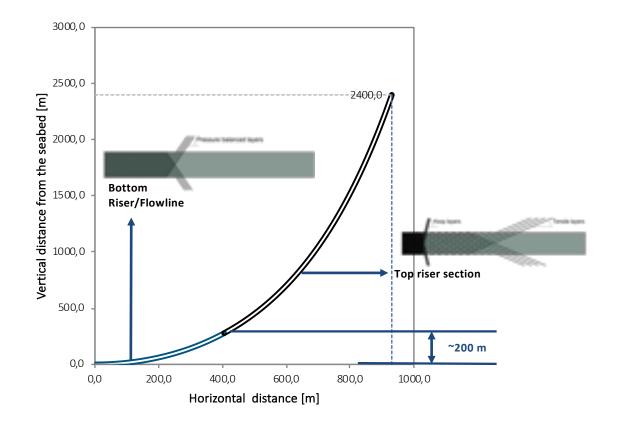
6.0in Flowline / 550m /Hydrocarbon production / Petronas

- TCP riser pull through I-tube onshore
 - I-tube marginally larger than TCP OD
 - Controlled environment
 - TCP terminated on-site
- TCP flowline prepared onshore
 - Tow-out to location using low-cost tug boats

Building field track record: staircase approach

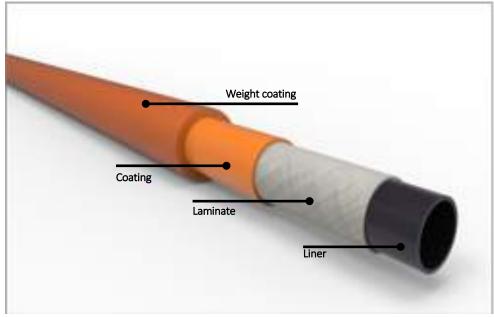


Riser Development: Case Study


- 6.0in WAG line for pre-salt Brazil
- Main Goal: To achieve Free Hanging Catenary at 2400 m WD
- FPSO Cidade de Sao Paulo (Spread Moored)

Parameter description	Specification		
Temperature	-20°C to 60°C		
Design Life	30 years		
MAOP	620 barg		
Water depth	2400 m		
Location	Pre-Salt Brazil		
Fluids	Water		
	CO ₂	< 90%	
	H ₂ S	< 100 ppm	

Riser Development: Case Study


- TOP Riser optimized for high tension.
- **BOTTOM Riser** optimized to comply with high curvature.
- **BOTTOM Riser** is the same as flowline since fatigue is not driving cross section design.

Riser Development: Weight coating technology

- System must be stable when filled with water and gas:
 - ✓ Preliminary global analysis shows that 20 kg/m submerged weight (filled with light fluid) is sufficient to reach an stable configuration in free hanging;
- Heavy Coating Technology:
 - ✓ AOG technology of heavy coating allows system optimization achieving a stable configuration while minimizing top tension loads;

Riser Development: Weight coating technology

Heavy Compound:

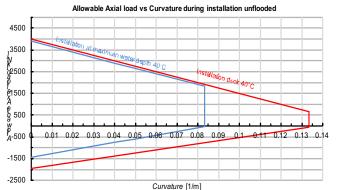
- Untreated natural mineral
- Very low chemical reactivity
- Used in automotive and cosmetics parts
- Density of 5.2 g/cm³

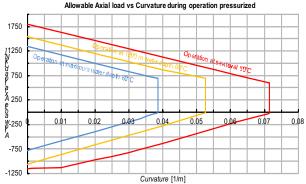
Weight coating compound:

- Polyethylene (PE) as base polymer (other polymers may be possible in the future)
- Density max 2.6 g/cm³ in PE (40% volume)
- Can be processed in extruder with proper tooling

Weight Coating Compound

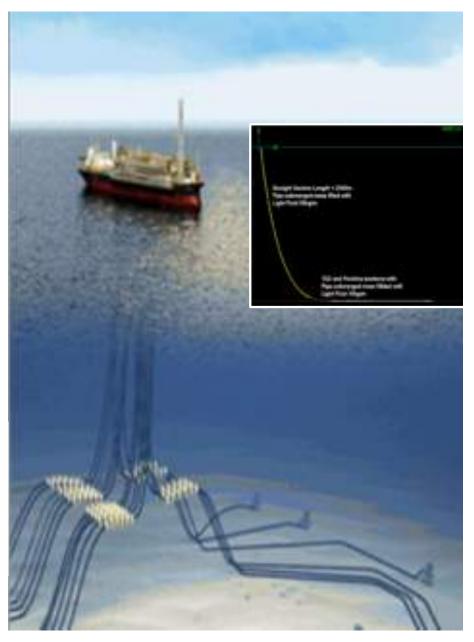
Riser Development: TCP Datasheet


Pipe Characteristics	Unit	Top Riser	Bottom Riser / Flowline
OD without heavy coating	[mm]	213	236
OD with heavy coating	[<i>mm</i>]	243	244
Bending stiffness at 60ºC	[kNm ²]	900	225
MAOP (internal top)	[barg]	620	620
MBR storage	[m]	7.5	3.5
Tensile capacity (installation)	[kN]	4000	560
Tensile capacity (operational)	[kN]	1800	485
Mass, in water, water filled	[kg/m]	34.8	25.8
Mass, in water, light fluid filled	[kg/m]	20	10



Riser Development: TCP Datasheet

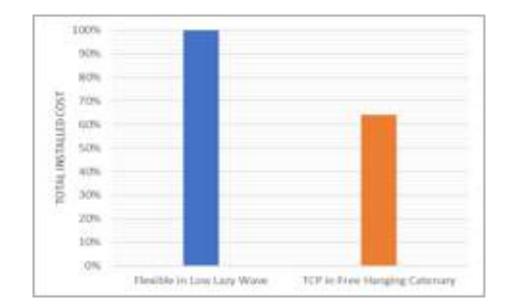
- Bonded structure: Axial strength, internal pressure and bend radius are all related;
 - Best way to represent pipe capacity is to produce performance envelopes for the different scenarios (Installation/Operation);
 - Pipe capacity already considering DNV safety factors;
 - Red curve applies to sea level (no EP);
 - Blue curve applies to seabed level (EP contribution);


Riser development: Conclusions

Detailed engineering shows feasibility

- In-place global analysis performed considering pre-salt environmental conditions and FPSO Cidade de Sao Paulo shows feasible in-place configuration;
- Installation assessment performed by SURF contractor shows feasible installation of TCPs;
- Preliminary assessment of TCP fatigue life shows large margin of safety

19


Riser development: Conclusions

TCP Riser reduces significantly total installation cost

- Free hanging configuration removes all buoyancy elements
- Reduced length per riser
- Less riser sections, reduced installation time
- Total cost saving per riser USD 6-8m

Further knock-on effects unlock potential cost saving on future FPSO's thanks to 50% lower top tension

- Lower loading on riser balcony
- Lower loading on mooring system
- More pay-load capacity for FPSO (gas handling etc)

Highlights of the presentation

Design approach based on new standard for TCP

- DNVGL RP F119, issued Q4 2015
- Understanding and predicting TCP behavior
- Generic, knowledge based approach

Several Applications

• Downlines, Jumpers & Flowlines, Risers

Fit-for-purpose materials

- Glass or Carbon Fibre
- PE,PA12 or PVDF


Composite riser developments

- Final step on staircase
- Heavy coating technology

Case Study – Pre-salt Brazil

- Significant cost reduction when FHC can be achieved
- Significantly reduced top-side tension

Thank you very much!

Teofilo Barbosa *Product Development Engineering Manager* info@airborneoilandgas.com